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Abstract Longitudinal clinical-pathological studies have
increasingly recognized the importance of mixed patholo-
gies (the coexistence of one or more neurodegenerative
and cerebrovascular disease pathologies) as important fac-
tors in the development of Alzheimer’s disease (AD) and
other forms of dementia. Older persons with AD pathology,
often have concomitant cerebrovascular disease patholo-
gies (macroinfarcts, microinfarcts, atherosclerosis, arterio-
losclerosis, cerebral amyloid angiopathy) as well as other
concomitant neurodegenerative disease pathologies (Lewy
bodies, TDP-43, hippocampal sclerosis). These additional
pathologies lower the threshold for clinical diagnosis of
AD. Many of these findings from pathologic studies, espe-
cially for CVD, have been confirmed using sophisticated
neuroimaging technologies. In vivo biomarker studies are
necessary to provide an understanding of specific patho-
logic contributions and time course relationships along
the spectrum of accumulating pathologies. In this review,
we provide a clinical-pathological perspective on the role
of multiple brain pathologies in dementia followed by a
review of the available clinical and biomarker data on some
of the mixed pathologies.
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Introduction

The most common causes of dementia in old age are Alz-
heimer’s disease (AD), cerebrovascular disease (CVD), and
Lewy body disease (LBD). There is also increasing recog-
nition for the role of TAR DNA-binding protein 43 (TDP-
43) and hippocampal sclerosis (HS) pathology, especially
in the oldest old [81, 94], but these pathologies are not
mutually exclusive. Indeed, multiple studies now show that
a large proportion of older persons harbor multiple types
of pathologies in their brain. The nomenclature for this
phenomenon has been variably referred to several terms
including multimorbidity [57], mixed pathologies [112],
multiple pathologies [64], and neuropathologic comorbid-
ity, [138]. These mixed pathologies are not only present
in persons with dementia but also in those diagnosed spe-
cifically with AD dementia. While most persons with AD
dementia are confirmed to have a pathologic diagnosis of
AD, additional vascular and neurodegenerative pathologies
are found in most cases [56].

The clinical counterpart to mixed pathologies is “mixed
dementia,” however, this term is often used to denote the
presence of AD with vascular pathology (and specifically
infarcts or white matter changes), whereas the spectrum
of mixed pathologies goes well beyond infarcts to include
other vascular pathologies (microinfarcts and vessel dis-
eases) and non-AD degenerative pathologies (Lewy bodies,
TDP-43, and HS). Unfortunately, because of lack of good
biomarkers, and overlapping cognitive phenotypes, there
are few guidelines for a diagnosis of mixed versus single
pathology dementias.
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Converging evidence from multiple longitudinal study
cohorts (Table 1) have set the benchmark for providing
evidence to indicate that the pathophysiologic process of
AD dementia may be a cumulative result of neurodegen-
crative and vascular pathologies [2, 58, 110, 138]. There is
some evidence that the neurodegenerative pathologies may
account for a larger percentage of the variability of cogni-
tive decline in aging [16]. However, it is important to note
that there still can be considerable difficulty determining
the relative impact of differing pathological lesions on a
single person’s cognition, given the variability in bascline
cognition, lack of biomarkers, and pathologic distribu-
tions and severities that may be difficult to ascertain during
life. In addition, from a public health standpoint the high
prevalence of vascular disease may make it a more desir-
able target for intervention. Indeed, there is some evidence
that reduction in vascular risk factors may be related to a
declining incidence of dementia [108]. Interpreting the lit-
erature of mixed pathologies can also be difficult due to
considerable variations in demographics, study design, and
neuropathological assessments between different cohorts.

The literature raises some important questions: Which
specific CVD and neurodegenerative pathologies lower the
cognitive threshold to develop AD dementia? Do specific
pathologies interact to potentiate AD, other neurodegenera-
tive, or vascular specific pathways? With the coexistence
of multiple pathologies, which pathologies are driving the
ncurodegenerative process?

In this review, we will discuss the clinical and pathologi-
cal evidence and implications of multiple brain pathologies
in aging and dementia. We will start with the post-mortem
studics that have provided much of the groundwork in the
field of mixed brain pathologies; followed by a clinical per-
spective on the interpretation of pathologic studies; and a
summary of clinical evidence for the influence of mixed
pathologies on cognition and dementia. We conclude by

summarizing the current state of the literature and recom-
mendations for future directions.

Mixed vascular and AD pathologies

In recent years, the role of mixed vascular and AD pathol-
ogies in the pathogenesis of cognitive impairment and
dementia has received considerable intercst. Several large
longitudinal cohort studies have investigated the coexist-
ence of CVD with AD pathology in persons with demen-
tia, with some showing an additive relationship and others
showing a synergistic contribution to cognitive impair-
ment (mixed dementia) [35, 97, 116, 119]. The spectrum
of vascular brain injury (VBI) assessed by neuropathol-
ogy includes large macroscopic, lacunar, and microscopic
infarcts, hemorrhages, and vessel pathologies including
cerebral amyloid angiopathy, intracranial atherosclerosis,
and arteriolosclerosis.

Data from the ROS/MAP cohort showed about 50% of
persons diagnosed with probable AD had mixed patholo-
gies (AD, PD/LBD, or macroscopic infarcts), ol which the
most common is the presence of AD pathology and infarcts
at 38% [111]. However, this study is an underestimate of
mixed AD and vascular pathology since it did not take into
account microinfarcts or any of the vessel diseases which
are also commonly present in addition to AD, and shown
to contribute to cognitive impairment. Indeed, updated
data from ROS/MAP presented in the current review (see
Table 2) shows that almost 75% of persons with a patho-
logic diagnosis have one or more of the stated vascular
pathologies. Several studies indicate the presence of mul-
tiple macroscopic infarcts has more effect with cognitive
impairment than the size of a single infarct [114, 125, 1371,
however, the proposal of size could be argued as microin-
farcts have also been shown to be powerful determinants of

Table 1 Overview of the community-based cohorts discussed in this review

Cohort Country Study design Initiated References

Religious orders study (ROS) USA Catholic nuns, priests, and brothers 1993 [12]
(community cohort)

Memory and aging project (MAP) USA Older persons without known dementia 1997 [13]
(community cohort)

The nun study USA Catholic sisters with and without dementia 1986 [119]
(birth cohort)

Honolulu Asian Aging study (HAAS) USA Japanese-American men (population study) 1991 [137]

The 90+ study USA Older persons >90 years (cohort study) 2003 [24]

Adult changes in thought (ACT) USA Older persons >65 years (population study) 1994 [20]

Vantaa 85+ Finland Older persons >85 years (population study) 1991 [124]

Medical research council UK General population-based cohort >65 years 1989 [97]

cognitive function in aging study
Baltimore longitudinal study of aging USA Persons >20 years (cohort study) 1958 [125]
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Table 2 Prevalence of mixed pathologies in ROS/MAP

Pathology Clinical diagnosis
No cognitive impairment Mild cognitive impairment Probable AD (n = 447)
(n=1360) (n=271)
No vascular* or other degenerative** 50 (13.89%) 12 (4.43%) 4 (0.89%)
Vascular only 102 (28.33%) 57 (21.03%) 22 (4.92%)
Other degenerative only (no AD) 14 (3.89%) 8 (2.95%) 6 (1.34%)
Other degenerative (no AD) + vascular 41 (11.39%) 28 (10.33%) 35 (7.83%)
AD only 30 (8.33%) 20 (7.38%) 14 (3.13%)
AD + vascular 75 (20.83%) 65 (23.99%) 122 (27.29%)
AD + other degenerative 6 (1.67%) 17 (6.27%) 34 (7.61%)
AD -+ other degenerative + vascular 42 (11.67%) 64 (23.62%) 210 (46.98%)

# yascular includes macroinfarcts or microinfarcts, or moderate to severe atherosclerosis, arteriolosclerosis, or cerebral amyloid angiopathy

*#* other degenerative includes Lewy body, TDP-43, and hippocampal sclerosis pathology only

dementia [4, 125], although when considering macro- and
microinfarcts, size, number, and location are all important.
There was some suggestion of an interaction between AD
and vascular pathology in the Nun study. Specifically, only
those participants with a pathologic diagnosis of AD and 1
or 2 lacunar infarcts showed higher prevalence of dementia,
thus prevalent clinical dementia was crucial upon whether
there were lacunar infarcts in the basal ganglia, thalamus,
and deep white matter [119]. Studies including the MAP
cohort also documented subcortical infarcts as important
correlates of cognitive impairment and dementia, however,
the effects were additive rather than synergistic {1 14]. The
Baltimore Longitudinal Study of Aging documented 35%
of persons with AD pathology and hemispheral infarcts,
and suggests only the hemispheral infarcts drive the effect
with dementia. However, their definition of hemispheral
infarcts included infarcts other studies described as subcor-
tical [125].

Microinfarcts are increasingly recognized in large com-
munity-based cohorts [4, 50, 75, 112, 120] and in persons
older than 90, the oldest old [25]. Estimates of microin-
farct prevalence in the elderly range from 16% to 46% [4,
50, 75, 112, 122], and jump to 51% in the oldest old [25].
Indeed, microinfarcts are also highly prevalent in persons
with probable AD, vascular dementia, and mixed demen-
tia [19, 43, 130]. Microinfarcts commonly coexist with
other pathologies including AD pathology and macroscopic
infarcts. For this reason, statistical models adjusting for
these pathologies are required to assess whether microin-
farcts have an independent contribution to cognitive decline
or dementia. Using these statistical approaches, multiple
studies have shown microinfarcts have an independent con-
tribution to cognitive decline or dementia. In particular,
the relationship with dementia appears to be driven by the
presence of cortical microinfarcts [25, 50] and in multiple
studies only the presence of multiple cortical microinfarcts

contributed to dementia [4, 120], highlighting the impor-
tance of the number and location of lesions. To enhance
understanding on how microinfarcts influence cognitive
function, studies have targeted examination for specific
domains. In the ROS cohort microinfarcts were associated
with lower episodic memory, perceptual speed, and semarn-
tic memory [4], whereas in the stroke registry investigating
cognitive decline (STRIDE) study microinfarcts were asso-
ciated with lower visuospatial abilities [133]. Differences
in these findings are most likely due to the different meth-
odology for examination of microinfarcts. Identification of
microinfarcts in the ROS study utilized routine histologic
methods, whereas the method of detection in the STRIDE
cohort used neuroimaging which as noted below only
detects the largest of cortical microinfarcts. Further differ-
ences include age, death/autopsy, and the assessment and
scoring for cognitive impairment.

Clinico-pathological studies have provided vast insights
into microinfarct pathology and their contribution to cogni-
tion or dementia. However, autopsy studies are cross-sec-
tional and due to sampling limitations, may underestimate
the burden of microinfarcts. Using an eloquent estimation
method, a study showed the presence of 1 or 2 microin-
farcts implies an estimated burden of hundreds of micro-
infarcts in the brain [136]. Studies employing sophisticated
neuroimaging techniques have also provided a promising
approach to investigate the burden of microinfarct pathol-
ogy during life [9, 74, 126]. However, the size of many
microinfarcts is below the limit of conventional imaging
techniques, rendering them to be typically examined by tra-
ditional neuropathology methods.

Vessel pathologies, including cerebral amyloid angiopa-
thy (CAA), arteriolosclerosis, and atherosclerosis are very
common mixed pathologies in aging, especially with AD
pathology, and have been shown to contribute to cogni-
tive impairment in late life even after controlling for AD
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and infarct pathology [5, 17]. Sporadic CAA, which is
very commonly associated with AD pathology in aging,
has been shown lo be independently associated with an
increase in the odds of a diagnosis of clinical AD, dementia
[17], lower late-life cognition [103], and an increased tra-
jectory of cognitive decline [17]. In the ROS/MAP cohort,
CAA was associated with lower function in multiple cog-
nitive domains including episodic memory, the clinical
hallmark of AD [6]. An autopsy study using data from the
Rochester epidemiology project reported CAA to be higher
in patients with mixed dementia compared to “pure” AD
and vascular dementia [28]. In the HAAS study, the pres-
ence of CAA in one neocortical region was present in 44%
of persons and associated with higher means of AD pathol-
ogy and the presence of 1 APOE-g4allele [103]. CAA-asso-
ciated pathologies such as lobar intracerebral hemorrhages,
microinfarcts or microbleeds are often found in persons
with dementia and cognitive impairment [2]. While tis-
sue loss is one mechanism by which CAA is likely related
to impaired cognition, studies suggest that CAA is also
related to cognitive impairment separate from at least some
of these lesions [16].

Arteriolosclerosis (intraparenchymal small vessel dis-
ease also called lipohyalinosis) is also common and has
been shown to be independently associated with poorer
global cognitive function and increased odds for develop-
ing clinical AD and dementia [3, 49]. In an effort to under-
stand involvement of cerebrovascular discase with late-life
cognitive trajectories, a recent study used a large autopsy
cohort of over 2000 subjects compiled from six different
centers. Data from the study showed the odds of having a
poorer trajectory for verbal reasoning was doubled with the
presence of severe arteriolosclerosis {73]. In the ROS/MAP
cohort, significant arteriolosclerosis and intracranial ath-
erosclerosis were also found to be associated with global
cognitive dysfunction, specifically in cognitive domains
including episodic memory, semantic memory, perceptual
speed, and visuospatial abilities [3]. The impact of these
vessel diseases was independent of other neurodegenerative
and vascular pathologies including infarcts.

The pathogenesis of cognitive decline in persons with
vessel disease is poorly understood. Vessel disease has
been correlated with white matter pathology, volumetric
changes [26], as well as inflammatory and blood brain bar-
rier changes. The role of vascular pathology is likely to be
a growing public health problem since mixed AD and vas-
cular pathology continues to rise in the oldest old [50]. TL is
also likely to be an important issue in community dwelling
African American and potentially other minorities. Black
clinic participants had more severe arteriolosclerosis and
atherosclerosis than white participants [11]. One possible
explanation for this may be higher prevalence for diabe-
tes and hypertension, conditions associated with vessel
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disease [I]. Vascular pathologies have been associated
with AD-related pathological changes in the south Asian
aging population, of which small vessel lesions showed a
higher degree of association [140]. Overall, the literature
suggests that vascular pathologics mixed with AD pathol-
ogy are very common. While some studies suggest vascular
pathologies directly add to the likelihood of clinical AD,
others suggest there is a synergistic effect between AD and
vascular pathologies [75]. Mechanisms of vascular cogni-
tive impairment and the contribution of vascular patholo-
gies to AD pathology remains an area of intense research
efforts. Common risk factors, interactions, and mechanisms
of injury from AD and vascular pathologies also remain
topics of great interest.

Mixed Lewy body and AD pathologies

Other common pathologies presented in persons with
mixed pathologies are Lewy bodies [7, 131]. Lewy bodies
are intraneuronal aggregates of a-synuclein protein. They
are common in the aging brain and often co-occur with AD
pathology in the brains of older people. In the ROS/MAP
cohort, over 60% ol participants with Lewy body pathol-
ogy had a pathologic diagnosis of AD [115]. Mixed AD and
LB pathologies are commonly observed in black and white
persons, however, there are some racial differences under-
lying the mixed pathology profile. Overall, black clinic
participants were more likely to have mixed pathology.
Compared to white persons, mixed AD with Lewy body
pathology was the most prevalent in black patients [11].
The authors hypothesize that this increase in prevalence
could be the result of selection bias from a clinic study.
Of note, a higher prevalence of LB pathology in whites
has also been previously observed in community-based
vs. clinic-based cohorts. This has been hypothesized to be
related to the association of LB pathology with behavioral,
sleep, and movement issues, making families more likely to
bring their relative into a tertiary care setting for an evalu-
ation [113]. Indeed, in a study combining multiple cohorts
from differing settings, the clinical diagnosis of Dementia
with Lewy body disease (Lewy body dementia or Parkin-
son’s disease) did not differ between races [42]. One needs
1o be cautious inferring prevalence of subtypes of dementia
using clinic samples.

Although Lewy body pathology alone can be associ-
ated with cognilive impairment and dementia, il is now
commonly recognized that Lewy body pathology in aging
occurs most in conjunction with a pathologic diagno-
sis of AD. In the presence of AD pathology, most studies
suggest the relationship between the pathologies is addi-
tive [46, 72], nonetheless, Lewy bodies have been associ-
ated with faster decline in most, but not all studies [132].
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- Regionalization of Lewy body burden in the brain may
affect the relationship with cognition. The distribution of
Lewy body pathology has been described Lo follow a cau-
dal to rostral progression, from the nigra to limbic regions
to the neocortex, giving rise to nigra-predominant, limbic-
type, and neocortical-type classifications. Amygdala pre-
dominant disease may reflect an alternate progression of
LB pathology. While it is commonly proposed that neocor-
tical and limbic Lewy body pathology are central in deter-

“mining cognitive impairment and dementia [115, 120], oth-
ers have challenged this to suggest Lewy body pathology
in the brainstem may also be important correlates of cog-
nitive impairment [65]; however, this finding is not repli-
cated in all studies [115]. Some propose the importance of
AD pathology burden, and suggest neocortical Lewy body
pathology is not sufficient to cause severe global cognitive
impairment and that AD pathology must be present, reflect-
ing a synergistic relationship [92]. Other studies suggest
that specifically burden of neurofibrillary tangles: (NFTs)
play a central role in pathogenesis in patients with Lewy
body spectrum disorders, as increasing levels of NFT bur-
den showed worsening of prognosis in these patients.
Indeed, increasing levels of AD pathology in these patients
also showed an increasing burden of a-synuclein pathology
[51]. Interestingly, in the Vantaa85 + study clinical fea-
tures of DLB correlated highly with neurofibrillary staging
rather than neocortical Lewy body pathology [108], which
may reflect differences in the underlying neuropathological
basis of dementia in the oldest old, persons older than 85
or 90 [124]. Other studies have also highlighted differences
with increasing age [55]. Analyses from the MRC-CFAS
and the MAP/ROS cohort also showed decreasing asso-
ciation between AD pathology and clinical dementia with
increasing age [55, 109].

Mixed TDP-43, AD, and hippocampal scleresis
pathology

TDP-43 pathology is commonly observed with AD pathol-
ogy and HS, and is an important factor contributing to cog-
nitive decline and dementia in late life. TDP-43 is related
to lower episodic memory in persons without AD or HS
pathology [90]. Stereotypical deposition of TDP-43 in
aging and AD has previously been reported, with the amyg-
dala being the most common region for TDP-43 burden
[142], followed sequentially by the entorhinal cortex, hip-
pocampus, and inferior or middle temporal cortex, suggest-
ing a gradual progression over time. Final involvement may
include the mid-frontal cortex [36] and basal ganglia [59].
Concomitant TDP-43 pathology plays an important
role in modifying clinical and radiological AD phenotype.

Subjects with AD pathology and TDP-43 inclusions were
ten times more likely to be cognitively impaired than sub-
jects without TDP-43 [61]. Specifically, when controlling
for HS and AD pathology, TDP-43 pathology is associated
with episodic memory impairment [61]. TDP-43 may also
have independent effects on neuroimaging features associ-
ated with AD. Indeed, MRI imaging studies show greater
hippocampal atrophy with greater TDP-43 burden [60)].

pathology independently increases the trajectory of cog-
nitive decline [142], and when with HS [91] and/or AD
pathology it increases the odds of developing dementia
[56]. However, TDP-43 is not exclusively found in AD
cases, but also observed in mixed AD/LB and DLB cases.
Prevalence of TDP-43 pathology was higher in AD demen-

tia cases at 74%, followed by mixed AD/DLB at 53%

[81 ].

o

| suggesting importance of TDP-43 towards the
progression of dementia rather than the onset of cognitive
impairment.

The pathogenesis in which TDP-43 contributes to cogni-
tive impairment still remains unknown. TDP-43 is related
to neuronal loss, which may arise due to deleterious loss
of TDP-43 from the nucleus [76]. Interestingly, a study
investigating pathological correlates in a cohort of ALS
patients show TDP-43 and microglial activation, a feature
commonly associated with neuronal loss, are highly corre-
lated with cognitive impairment, specifically with executive
function. However, they did not correlate with MMSE [21].
These findings emphasize the need for increased research
to further understand the pathophysiological mechanisms
underlying TDP-43 pathology.

HS is defined by significant neuronal loss and gliosis in
the CAl and/or the subiculum regions of the hippocam-
pus. HS is increasingly being recognized in persons with
dementia, specifically persons with AD dementia and fron-
tal lobar degeneration (FTD) [33]. TDP-43 pathology was
seen in almost 90% of cases with HS [95]. HS is twice
as common in older persons >90 than in younger persons
and also commonly coexists with AD pathology and Lewy
body pathology. However, in a model controlling for age,
AD, Lewy body, and TDP-43, only TDP-43 had a signifi-
cant relationship with HS. TDP-43 in the absence of HS is
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associaled with episodic memory loss; together HS with
TDP-43 is associated with lower function in muliiple cog-
nitive domains [91]. Finally, in persons without a patho-
logic diagnosis of AD, TDP-43 is an important factor in
cpisodic memory impairment [90]. Another ctiological
mechanism that may contribute to the pathogenesis of HS
is ischemic injury, suggesting involvement of cercbrovas-
cular disease [45, 95]. Indeed, it is well known in the neu-
ropathology litcraturc that global hypoxic/ischemic injury
can result in severe damage to CAl/subicutum of the hip-
pocampus. Support, for vascular etiologic factors, comes
from data from multiple large autopsy series investigating
the association between cerebrovascular pathology and HS-
aging showing a strong association of arteriolosclerosis in
the frontal cortex with HS. Other vascular pathologies and
vascular risk factors were not associated [94, 96]. Despite
recent advances in the literature regarding HS-Aging, a
term to describe hippocampal sclerosis of aging, definitive
characterization of clinical and pathological features still
remains unclear. A recent approach to better characterize
this process has been through genetic—phenotype correla-
tions. Previous studies have been linked HS-Aging to sin-
gle nucleotide polymorphisms (SNPs) within four genes;
GRN, TMEM106B, ABCC9, and KCNMB2. Furiher stud-
ies show these SNPs are associated with distinct pattern of
corlical atrophy in the frontal lobes [98].

Mixed pathologies: update from the religious
orders study and rush memory and aging project

Here we update the prevalence and proportions of
mixed pathologies we have gathered from the ROS/
MAP studies (general information on these community-
based cohorts and clinical and pathologic diagnoses
can be found in [12, 13]. We included 1078 consecutive
deceased and autopsied subjects (mean age of death,
89 years, SD = 6.5; 32% men; mean education, 16 years,
SD = 3.6) since 1993 that had completed clinical diagno-
sis proximate to death (no cognitive impairment (NCD),

NCI
N =360

Fig. 1 Mixed pathologies in
ROS/MAP. Prevalence of mixed
pathologics in ROS/MAP sub-
jects with a clinical diagnosis
of no cognitive impairment,
mild cognitive impairment, and
probable AD. V vascular, OD
other degenerative, AD Alzhei-
mer’s disease, 0 no vascular or
neurodegenerative pathology
described in Table 2

AD+ 0D
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mild cognitive impairment (MCI) or probable AD) and
completed pathologic assessments for AD (NIA-Reagan
criteria intermediate or high), infarcts (chronic macro or
micro), vessel disease (moderate or severe atheroscle-
rosis, arteriolosclerosis, or CAA), TDP-43 pathology
advanced to hippocampus or beyond, cortical LB dis-
case, and the presence of hippocampal sclerosis. Each
of these pathologies has been previously shown to lower
the threshold for cognitive impairment. The prevalence of
these pathologies across each diagnostic group is shown
in Fig. | and Table 2. As previously described [112], a
pathologic diagnosis of AD is common in older persons
who die without cognitive impairment, is seen in about
half of those with MCI, and confirmed in majority (85%)
of older persons with a clinical diagnosis of probable
AD. However, these new data that now include additional
degenerative (LB, TDP, HS) and vascular pathologies
(microinfarcts, moderate to severe atherosclerosis, arteri-
olosclerosis and CAA) known to contribute to the odds of
cognitive impairment or dementia, now demonstrate that
over 85% of those with MCI, and over 95% of those with
probable AD have mixed pathologies. A striking aspect
of these updated numbers and figure is the proportion of
persons with a pathologic diagnosis ol AD and both vas-
cular and other degenerative pathologies shifting from
11% in subjects with NCI, to 24% in subjects' with MCT,
to 47% in subjects with probable AD. In persons with
probable AD and mixed AD pathology, vascular discasc
is present in approximately 90% and other degenerative

diseases in abou 5 e |

(Fig. 2a). In those with probable AD without a pathologic
diagnosis of AD, mixed vascular disease and other degen-
erative diseases are also very common. Infarcts with
moderate to severe vessel disease remains the most com-
mon of the vascular pathologies, whereas TDP-43/HS is
more prevalent than TDP-43 without HS (Fig. 2b).

Probable AD .
N =447

\[al]
N =271
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(a)
Probable AD Probable AD
Mixed AD and Vascular Mixed AD and Other Degenerative
N =332 N =243
With AD
atholo
Y gY v HS
LB+ TDP + HS LB + HS
LB + TDP
(b)
Probable AD Probable AD
Vascutar Other Degenerative
N=57 N=41
No AD
pathology
LB+ TDP + HS LB + TDP

Fig.2 Prevalence of mixed pathologies in ROS/MAP subjects with
probable AD. Prevalence ol mixed AD pathology in ROS/MAP sub-
jects with probable AD and with a pathologic diagnosis of AD (a).
Prevalence of vascular and other degenerative pathologies in ROS/
MAP subjects with probable AD, without a pathological diagnosis of

Overview of mixed pathologies

Overall, a large body of data suggests that mixed pathol-
ogies, most commonly AD pathology with vascular or
other degenerative pathologies, arec very common in
aging and that these mixed pathologies are important
in lowering the (hreshold [or cognilive impairment and
dementia. There is some evidence that the neurodegen-
eralive pathologies are more potent than the vascular;
however, the latter may be more common and numerous.
Despite different methodologics clinical and neuropatho-
logical assessments in large clinical-pathologic studies
almost all studics have shown common mixed patholo-
gies and an additive or synergistic role of additional
pathologics, with lowering of the threshold for the diag-
nosis of dementia.

There remain many questions. The extent to which
each of these pathologies independently and together
contributes to the pathophysiologic processes underlying

AD (b). inf infarcts (including macro- and microinfarcts), Vess vessel
discase (including arteriolosclerosis, CAA, and atherosclerosis), TDP
Tar DNA-binding protein 43, HS hippocampal sclerosis, LB Lewy
body

neurodegeneration and cognitive decline is unclear. Each
pathology may contributc differentially to specific cogni-
tive domains [3, 4, 6, 91, 114, 113, 142] and decline [16,
141] and may affect basclincs as well as trajectorics [138,
141]. Indeed, not only is the number of pathologies that
is important, but the typc of pathologics that cocxist [64].
It is also important to recognize that these pathologic
brain markers do not tell the whole story. Data from a
longitudinal clinical-pathological study showed combin-
ing global AD pathology, plaques, tangles, macroscopic
infarcts, microscopic infarcts, and Lewy body patholo-
gies only accounted for 41% of the variation of cognitive
decline, leaving about 60% of the variance of cognitive
decline unexplained. While this study did not account for
the pathologies of hippocampal sclerosis, TDP-43 pathol-
ogy, and small vessel disease, all of which have been asso-
ciated with cognitive impairment [16], it does raise more
questions regarding the other potential links between brain
pathologies, reserve factors, and cognitive decline.
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The pathologic literature suggests both vascular and
neurodegenerative pathologies lower cognitive threshold,
however, that the timing of decline may vary by: pathol-
ogy [141, 148]. For example, infarct pathology has been
shown to be associated with early cognitive decline, while
Lewy body pathology is associated with terminal cogni-
tive decline. Assessing the temporal course of neurodegen-
erative pathologies including neurofibrillary tangies, Lewy
bodies, TDP-43, and hippocampal sclerosis showed a dif-
ferential relationship with cognition, with very high TDP-
43 potently affecting incipient cognitive decline [141, 148].
Clinical progression to dementia can also vary depending
on the combination of pathologies vs. presence of single
pathology. Data from the U.S. Alzheimer’s Disease Center
show persons with mixed AD/LBD pathology showed a
faster progression to clinical dementia than persons with
AD/VBI or AD alone. Subsequent analyses showed addi-
tional pathologies with intermediate levels of AD pathol-
ogy having a higher progression rate than pathologies with
high levels of AD pathology, suggesting impact of mixed
pathologies may be dependent on the burden of AD pathol-
ogy [20]. ‘

Many studies have relied on subjective interpretation to
characterize pathology measures, and whilst this approach
has advanced the literature in understanding the role of
mixed pathologies with cognition, there are limitaiioss, and
more objective and quantitative measures are warranted.
Stercology methods have been important in computerized
image analysis; further advances in technology have been
made to promote digital neuropathological asscssments
[96]. Finally, in some epidemiologic clinical-pathologic
studies, sophisticated statistical modeling can be used to
query trajectories and stages of cognitive decline in relation
to pathology. However, the pathology is defined as cross-
sectional and the observed effect is the cumulative -burden
of pathologies. This poses an increasing need to better
understand the burden of vascular and neurodegenerative
pathologies during life.

The concept of dementia with mixed pathologies: a
perspective on pathology

Dementia is a clinical syndrome associated with both cog-
nitive and functional deficits [8]. Clinicians traditionally
ascribe a specific etiology to the dementia syndrome for
the obvious purpose of prognosis and management [40,

bed |[86]. This new con—
tual approach to dementia pathophysiology acknowledges
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i P! s [8, 112, 138] or the oldest old
[25]. Consequently, newer diagnostic assessments have
expanded to indicate a primary diagnosis of presumed
cause for dementia while allowing for additional diseases
that may contribute to the dementia syndrome or may sim-
ply be present without clinical consequence [87]. Unfortu-
nately, clinical diagnostic precision is often relatively poor
[71] leading to the use of neuropathological findings as the
presumed “gold standard” of disease etiology.

While neuropathological brain examination should
remain the gold standard basis for clinical-pathologi-
cal correlation, neuropathological findings, by definition,
reflect the sum of all injury during life, including time
preceding and after the onset of clinical dementia. There-
fore, comorbid pathologies may be deemed less or more
relevant than timely in vivo measures might indicate (e.g.,
the occurrence of stroke years after the onset of what would
otherwise be a dementia typical of AD versus the presence
of asymptomatic cerebral infarction seen on brain imaging
prior to the onset of otherwise typical AD dementia). A spe-
cific or even primary pathological diagnosis, when in vivo
evidence is not available, could lead to misconceived eti-
ologies of dementia even after post-mortem examination.

Understanding of the complexities of mulli-factorial
dementias is further complicated by the lack of distinct
clinical manifestations of the various brain diseases when
seen in combination. For example, vascular disease is tradi-
tionally felt to cause disproportional impairments in execu-
tive function while relatively sparing memory performance.
A comprehensive study of individuals with various degrees
of cerebrovascular disease showed that the influence of cer-
ebrovascular disease was generally clinically under-esti-
mated, particularly in the presence of AD pathology [105].
A follow-up study on a similar group of subjects confirmed
that AD pathology tends to have a disproportional effect
on cognitive ability when viewed at autopsy [23]. Similar
difficulties occur in understanding the pathology of other
mixed diagnoses, such as Lewy body dementia [93] or the
Lewy body variant of AD [44].

The challenges of assessing the impact of mixed path-
ological processes are also complicated by the fact that
certain pathologies, such as cerebrovascular disease, are
extremely common and can have a variable period of
exposure that could contribute to brain injury. Hyperten-
sion and diabetes are two common examples. The preva-
lence of hypertension increases with age reaching nearly
100 percent prevalence above age 80 [127, 143]. Diabetes
has a similar age-related increase in prevalence, although
it does not reach the same population exposure as hyper-
tension [85]. Both medical illnesses (specifically mid-life
hypertension) are known risk factors for dementia {139],
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but individual exposures may vary from years to decades
making causal deductions for dementia etiology more dif-
ficult, particularly because they may influence cognilion
independent of “obvious structural MRI changes” [149].
For example, cercbral atrophy, which is a common consc-
quence of vascular risk factors and occurs early in life in
the absence of obvious cerebrovascular brain injury and is
associated with cognitive impairment {37, 79, 135], is not
generally well quantified pathologically. A similar lack of
defined pathology exists for white matter injury desgite the
evident risk for clinically relevant cognitive impairment
[29]. Finally, the potential influence of common medical
illnesses as they relate to the concept of “mixed pathology”
is made more difficult by the absence of a “healthy brain”
when it comes to pathological diagnosis [27, 62]. This limi-
tation may complicate interpretation of the pathological
correlates of various common medical illnesses as well as
advanced aging [24].

In summary, while neuropathological assessments
remnain important to determine disease etiology and. clinical
neuropathological associations, in vivo measures are neces-
sary to understand time course relationships.

Clinical evidence for the influence of mixed
pathologies on cognition :

In this section, we first discuss available biomarkers of
specific disease processes separately followed by a sum-
mary of available data related to mixed pathologics. A
comprehensive review of the literature related to biomark-
ers of dementing disorders which includes considcrable
work on cognitive, CSF and imaging measures is.beyond
the scope of this review, however, a brief summary creates
the foundation for clinical studies that examine the interac-
tion of AD, particularly with the two most common disease
pathologies: cerebrovascular and Lewy body disease.

Biomarkers of specific dementing diseases
AD

The hallmark clinical features of AD include episodic
memory impairment [ 1] followed by either executive dys-
function or semantic memory impairment [15], although
this sequence of clinical features can be variable and spe-
cific subtypes of AD dementia exist such as primary pro-
gressive aphasia [41], posterior cortical atrophy [123], and
frontal variants [144], rendering episodic memory loss as
the hallmark of AD less reliable, particularly carly in the
course of the illness. Lack of a concise and sensitive cog-
nitive biomarker of AD has led to the widespread nse of

ancillary testing, particularly CSF and imaging markers,
which have been codified into a number of recent diag-
nostic guidelines [34, 52]. The advent of amyloid [69] and
more recently tau [145] imaging in combination with well-
established MRI analyses [32, 117] have revolutionized
the concept of AD pathophysiology in the clinical setting
[33, 121]. With these technologies, AD is no longer con-
sidered only a pathological diagnosis, but a chronic disease
diagnosed clinically whereby onset, natural history risk
and protective factors as well as various treatments can be
studied in vivo. Such advances also offer the opportunity
to examine the interaction of AD with other measurable
pathologies during life. ’

Cerebrovascular disease

Contrary to AD pathology, which. has .only recently
become visible during life, cerebrovascular disease: has a
long and established history of early. detection and treat-
ment. In fact, most reliable clinical criteria for: vascu-
lar dementia (VaD) include a combination of cognitive
impairment (emporally associated with clinical stroke
in association with imaging evidence of cerebral infarc-
tion [107]. The advent of advanced imaging techniques
such as MRI, however, has led to identification of vari-
ous, asymptomatic processes [78, 134], the clinical: sig-
nificance of which are widely debated [106]. Unlike:AD,
it is the clinical phenotype of VaD that remains most etu-
sive. Despite multiple efforts to define a specific pheno-
type [311, a more general consensus has emerged around
the concept of vascular contributions to cognitive impair-
ment [99, 118), particularly as it relates to “small vessel
disease” [134]. In one of the largest studies to compare
cognition and MRI between AD and VaD, Logue et al.
[77] found that measures of global atrophy were essen-
tially identical between the two diseases and that as many
as 25% of VaD subjects had extreme hippocampal atro-
phy. Moreover, the extent of white matter hyperintensity
(WMH) burden predicted both cerebral and hippocampal
atrophy for both dementia groups. Hippocampal atrophy
also was significantly associated with mini-mental status
examination (MMSE) scores for both groups. Conversely,
WMH was independently associated with MMSE scores in
VaD, but not AD subjects. These findings led the authors
to conclude that “These results strongly suggest a consist-
ent relationship between clinically recognized dementia
and tissue loss independent of etiology...” Unfortunately,
this study, like many other clinical studies, was limited by
lack of awareness of the contribution of concomitant AD
pathology, which is estimated to be about 50% in popula-
tion-based neuropathological studies of clinically defined
VaD subjects [70] making clear conclusions about the
clinical phenotype of “pure” VaD difficult. As discussed
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below, however, the advent of in vivo biomarkers of AD
pathology enables detailed examination of the interaction
between vascular brain injury and AD pathology on cogni-
tive impairment.

Lewy body disease

The clinical definition of dementia with Lewy bodies
(DLB) has consistently focused on the motor aspects
of Parkinsonism in the seiting of dementia [82]. Cur-
rent clinical guidelines also include additional features
of fluctuating cognition, well-formed visual hallacina-
tions [83] and REM sleep disorder [14]. In addition,
patients suffering with DLB are thought to have differ-
ing neuropsychological profiles. While AD is character-
ized by more prominent declarative memory impairment,
the cognitive impairments of DLB emphasize more pro-
nounced visuoperceptual, attentional, and verbal fluency
impairments [63]. Despite confirmation of these differ-
ences in patients followed to autopsy and accounting for
the extent of concurrent AD pathology [102], the clinical
diagnoslic accuracy remains relatively low [93]. This was
felt to be due to the insensitivity of clinical specificity
of the presence of Lewy bodies among individuals with
moderate dementia and increased attribution of Lewy
bodies to motor slowing in advanced dementia.

Neuroimaging of DLB shows similarly low sensitiv-
ity even using more advanced PET ligands such as amy-
loid and tau [39]. Alternative measures such as dopamine
transporter imaging, however, may be more promising
[38], but have yet to be tested in large prospective studies.
DLB like VaD, therefore, is a pathological process occur-
ring commonly in the setting of concurrent AD pathol-
ogy. Unlike vascular disease, however, accurate in vivo
markers are not as well developed, leaving the clinical
assessment of Lewy body pathology in mixed dementias
less certain.

Summary of biomarkers

Recognition that mixed brain pathologies are common
to cognitive impairment and dementia, particularly in
community-based studies [8] and the oldest old {64] has
led to revised concepts of dementia etiology [86] and the
potential role of treatment strategies [10]. For this new
approach to be effective, however, precise and accurate
biomarkers of disease pathologies must be available. CSF
along with neuroimaging studies appears promising with
regard to identification of AD and CVD pathologics, but
further work is clearly needed with regard to alpha-synu-
clein. In the next section, we summarize available in vivo
data that support evidence of independent and additive
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effects of the most common mixed form of dementia: AD
plus CVD. :
While biomarkers for these “big three” will certainly
help to clinically evaluate the vast majority of mixed
pathologies in dementia, more work is still needed and
newer data suggest that other, yet, clinically undetectable
processes such as hippocampal sclerosis and TDP-43 relo-
cation contribute significantly to cognitive decline among
older individuals even with other pathologies are taken into
account [91]. ol

Evidence for the independent, but combined
effects of AD and CVD pathologies on dementia

In 1992, the State of California AD diagnostic and treai-
ment centers, led by Dr. Helena Chui, proposed crite-
ria for the diagnosis of ischemic vascular dementia [22].
Unique to this guideline was the notion that “These-cri-
teria [should] broaden the conceptualization of vascular
dementia, include the results of neuroimaging studies,
emphasize the importance of neuropathologic confirma-
tion, refine nosology, and identify areas that require fur-
ther research. Parallel use of the proposed definitions of
“possible” and “mixed” categories in the diagnosis of
both AD and IVD would ensure compalibility between ...
criteria for AD and the ... criteria for IVD”. Taking this
conceptual approach, Dr. Chui proposed the ischemic vas-
cular dementia (IVD) program project (PO1-AG12435),
designed to elucidatc how CVD causes cognitive impair-
ment, either alone or in combination with AD. This pro-
spective; longitudinal study included initial identification
of individuals with memory impairment and modest cer-
ebrovascular brain injury as seen on MRI. Early cross-
sectional imaging studies showed that regional atrophy
measures were most strongly associated with cognition
in this cohort [36], although follow-up pathological stud-
ies also suggested that in more than 50% of the individu-
als, hippocampal atrophy may have a vascular origin
[130]. Longitudinal analysis of the same cohort revealed
a more complex relationship between regional atrophy,
particularly hippocampal atrophy, and cognition [88]. In
this analysis, individuals without evidence of subcortical
lacunes showed a highly significant relationship between
hippocampal volume and cognition. For individuals with
lacunes, however, this relationship was significantly
weaker suggesting (hat more widespread injury to corti-
cal systems was coincident. In a follow-up study, Mun-
gas et al. [89] further cxamined the relationship between
longitudinal differences in MRI measures and cognitive
change. This approach enabled modeling of the impact of
incidence lacunar infarcts on cognitive trajectories which
showed subtle, but clear evidence of decline in cognitive
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ability associated with incident lacunar infarcts. Follow-
up neuropathological studies that examined the role of
vascular brain injury on cognition [23] and MRI measures
[54] showed that AD pathology often overwhelmed mild
cerebrovascular disease with respect to cognitive ability,
but that the two processes often combined to affect MRI
measures, particularly global atrophy.

Given evidence that AD pathology has an overwhelm-
ing effect on cognition in the setting of mild .vascular
disease, the approach of the program project was revised
to include individuals with more substantial and sympto-
matic vascular disease. In addition, amyloid imaging was
introduced. Results of cross-sectional studies by March-
ant et al. [80] found that vascular brain injury—defined
by the presence of extensive WMH and infarction on
MRI—have an early and independent effect on cognition,
even amongst those who have associated amyloidosis.
Follow-up studies found that vascular disease results in
increased cerebral atrophy even in cortical areas consid-
ered to be primarily affected by AD pathology [128] and
that regional atrophy mediates memory loss [129].

The independent elfects of amyloid and vascular brain
injury have been further examined in a series of eloquent
studies on subcortical vascular dementia (SIVD) [606, 67,
77, 101, 146]. This unique group of patients was defined
as meeling DSM-IV criteria for vascular dementia.in the
presence of severe WMH, without accompanying' lacunar
infarctions, but without evidence of territorial infarction or
macrohemorrhage on MRI [77]. Initial studies found that
nearly 70% of the patients had no significant amyloid accu-
mulation on PET scan. There were no differences in clini-
cal symptomatology, vascular risk factors or hippocampal
atrophy between those with and without extensive amyloi-
dosis. Immediate and delayed recall, however, was signifi-
cantly worse among SIVD subjects with extensive amyloi-
dosis suggesting a subtle but independent effect of amyloid
on memory performance in the presence of SIVD. In addi-
tion, CVD and AD measures were found to be uncorrelated
supporting the notion of independent effects [101]. Further
analyses of this amyloid negative SIVD cohort found sig-
nificant cortical thinning, but in a pattern somewhat differ-
ent from AD [66]. These differences in cerebral atrophy
also appear to differentially affect baseline [146] and lon-
gitudinal [67] cognitive function, although the ability to
clinically differentiate VaD trom AD on an individual basis
remains difficult [147].

While these studies examined the independent but addi-
tive impact of CVD and AD pathologies, other studies
suggest that intraparenchymal amyloidosis on PET imag-
ing may also be increased in relationship to vascular risk
factors [48] suggesting the possibility for both interactions
as well as independent processes. Because older cohorts
may not have granular details on blood pressure, vascular

risk factors, pathology, and cognition, f{urther studies of
younger individuals with vascular risk factors may help to
clarify this issue.

Summary and future directions

In summary, the advent of molecular imaging combined with
MRI has cnabled specific studies of the in vivo effects of the
often-combined CVD and AD pathologies. Preliminary evi-
dence supports the notion of independence of these two pro-
cesses on the types of brain injury as well as the influence
on cognitive processes, confirming pathological data pre-
viously available. This evidence makes it likely that the co-
occurrence of CVD increases dementia risk in later life as
suggested by risk factor analyses based on epidemiological
studies [68&], and points to potential therapeutic interventions
that may substantially reduce dementia incidence through
the aggressive control of vascular risk factors [10, 30]. At the
same time, because pathologies are often mixed, it is impor-
tant to address common underlying risk factors and biologic
mechanisms ol degeneration in future research. For instance,
common genetic tisk variants may increase risk of multiple
forms of pathology (e.g., apoE ¢4 is related Lo risk of amyloid
deposition, CAA, LB and to a lesser degree cerebral infarcts
[47]); and inflammatory mechanisms may be a mechanism of
injury in multiple neurodegenerative and vascular diseases.
Finally, though there have been strong advances in biomark-
ers there is a strong need for further in vivo work with bio-
markers of other specific pathologies including small vesscl
vascular disease, LB, TDP-43, and HS to successfully study
the prevention, diagnosis and trecatments of mixed dementia.
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